A Hybrid Pareto Model for Asymmetric Fat-Tail Data

نویسندگان

  • Julie Carreau
  • Yoshua Bengio
چکیده

We propose an estimator for the conditional density p(Y |X) that can adapt for asymmetric heavy tails which might depend on X. Such estimators have important applications in nance and insurance. We draw from Extreme Value Theory the tools to build a hybrid unimodal density having a parameter controlling the heaviness of the upper tail. This hybrid is a Gaussian whose upper tail has been replaced by a generalized Pareto tail. We use this hybrid in a multi-modal mixture in order to obtain a nonparametric density estimator that can easily adapt for heavy tailed data. To obtain a conditional density estimator, the parameters of the mixture estimator can be seen as functions of X and these functions learned. We show experimentally that this approach better models the conditional density in terms of likelihood than compared competing algorithms: conditional mixture models with other types of components and multivariate nonparametric models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Pareto Model for Conditional Density Estimation of Asymmetric Fat-Tail Data

We propose an estimator for the conditional density p(Y |X) that can adapt for asymmetric heavy tails which might depend on X. Such estimators have important applications in nance and insurance. We draw from Extreme Value Theory the tools to build a hybrid unimodal density having a parameter controlling the heaviness of the upper tail. This hybrid is a Gaussian whose upper tail has been replace...

متن کامل

Higher moments portfolio Optimization with unequal weights based on Generalized Capital Asset pricing model with independent and identically asymmetric Power Distribution

The main criterion in investment decisions is to maximize the investors utility. Traditional capital asset pricing models cannot be used when asset returns do not follow a normal distribution. For this reason, we use capital asset pricing model with independent and identically asymmetric power distributed (CAPM-IIAPD) and capital asset pricing model with asymmetric independent and identically a...

متن کامل

Comparison of Artificial Neural Network and Multiple Regression Analysis for Prediction of Fat Tail Weight of Sheep

A comparative study of artificial neural network (ANN) and multiple regression is made to predict the fat tail weight of Balouchi sheep from birth, weaning and finishing weights. A multilayer feed forward network with back propagation of error learning mechanism was used to predict the sheep body weight. The data (69 records) were randomly divided into two subsets. The first subset is the train...

متن کامل

Bayesian Estimation for the Pareto Income Distribution under Asymmetric LINEX Loss Function

The use of the Pareto distribution as a model for various socio-economic phenomena dates back to the late nineteenth century. In this paper, after some necessary preliminary results we deal with Bayes estimation of some of the parameters of interest under an asymmetric LINEX loss function, using suitable choice of priors when the scale parameter is known and unknown. Results of a Monte C...

متن کامل

Modeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)

In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006